Akademik

ФОТОХИМИЯ

наука о хим. превращениях в-в под действием электромага, излучения - ближнего ультрафиолетового (~ 100-400 нм), видимого (400-800 нм) и ближнего инфракрасного (0,8 - 1,5 мкм).

Исследования хим. действия излучения на разл. в-ва и попытки его теоретич. истолкования начинаются с кон. 18 в., когда Дж. Сенеби высказал предположение о том, что необходимая для достижения определенного хим. эффекта продолжительность действия света обратно пропорциональна его интенсивности. В 19 в. параллельно происходило открытие новых р-ций орг. и неорг. в-в под действием света и физ.-хим. исследование механизма и природы фотохим. р-ций. В 1818 T. Гротгус отверг гипотезу о тепловом действии света, предположил аналогию в воздействии на в-во света и электричества и сформулировал принцип, согласно к-рому причиной хим. действия м. о. только тот свет, к-рый поглощается в-вом (закон Гротгуса). Дальнейшими исследованиями было установлено, что кол-во продукта фотохим. р-ции пропорционально произведению интенсивности излучения на время его действия (P. Бунзен и Г. Роско, 1862) и что необходимо учитывать интенсивность только поглощенного, а не всего падающего на в-во излучения (Я. Вант-Гофф, 1904). Одно из важнейших достижений Ф.- изобретение фотографии (1839), основанной на фотохим. разложении галогенидов серебра.

Принципиально новый этап в развитии Ф. начался в 20 в. и связан с появлением квантовой теории и развитием спектроскопии. А. Эйнштейн (1912) сформулировал закон квантовой эквивалентности, согласно к-рому каждый поглощенный в-вом фотон вызывает первичное изменение (возбуждение, ионизацию) одной молекулы или атома. Вследствие конкуренции хим. р-ций возбужденных молекул и процессов их дезактивации, а также обратного превращения нестабильных первичных продуктов в исходное в-во, хим. превращения претерпевает, как правило, лишь нек-рая доля возбужденных молекул. Отношение числа претерпевших превращение молекул к числу поглощенных фотонов наз. квантовым выходом фотохим. р-ции. Квантовый выход, как правило, меньше единицы; однако в случае, напр., цепных р-ций он может во много раз (даже на неск. порядков) превышать единицу.

В России важное значение имели в нач. 20 в. работы П. П. Лазарева в области фотохимии красителей и кинетики фотохим. р-ций. В 40-е гг. А. Н. Терениным была высказана гипотеза о триплетной природе фосфоресцентного состояния, играющего важную роль в фотохим. р-циях, и открыто явление триплет-триплетного переноса энергии, составляющее основу одного из механизмов фотосенсибили-зации хим. р-ций.

Использование достижений квантовой химии, спектроскопии, хим. кинетики, а также появление новых эксперим. методов исследования, в первую очередь методов изучения очень быстрых (до 10-12 с) процессов и короткоживущих промежут. в-в, позволило развить детальные представления о законах взаимод. фотонов с атомами и молекулами, природе возбужденных электронных состояний молекул, механизмах фотофиз. и фотохим. процессов. Фотохим. р-ции протекают, как правило, из возбужденных электронных состояний молекул, образующихся при поглощении фотона молекулой, находящейся в основном (стабильном) электронном состоянии. Если интенсивность света очень велика [более 1020 фотонов/ (с


Химическая энциклопедия. — М.: Советская энциклопедия. . 1988.