Akademik

АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ
АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ
        одна из осн. абстракций (идеализации) классич. (теоретико-множеств.) математики и классич. математич. логики. Состоит в отвлечении от невозможности полного обозрения к.-л. бесконечного образования (бесконечной совокупности элементовк.-л. рода; знаковых конструкций, возникающих в ходе неограниченно продолжаемого конструктивного процесса; см. Конструктивное направление) и в рассмотрении его в качестве единого объекта — актуально бесконечного множества (напр., множества всех натуральных чисел, континуума точек отрезка, множества всех формул любой длины логич. исчисления), в применении к которому можно рассуждать по законам обычной (двузначной) логики и, в частности, применять исключённого третьего принцип и закон снятия двойного отрицания. А. а. б. не используется в интуиционистской математике и логике (см. Интуиционизм) и конструктивном направлении.
        Френкель А. А., Б а р - X и л л е л И., Основания теории множеств, пер. с англ., М., 1966; ? е т p о в Ю. А., Логич. проблемы абстракций бесконечности и осуществимости, М., 1967.

Философский энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

АБСТРА́КЦИЯ АКТУА́ЛЬНОЙ БЕСКОНЕ́ЧНОСТИ
одна из осн. абстракций математики и логики, позволяющая исследовать бесконечные совокупности (множества), применяя к ним логич. принципы (в частности, исключенного третьего закон, произвольного выбора принцип и др.), почерпнутые из опыта обращения с конечными совокупностями. А. а. б. состоит в отвлечении от незавершенности и незавершимости процесса образования бесконечного множества, от невозможности задать такое множество полным списком его элементов (в этом смысле А. а. б. состоит в отвлечении от "бесконечности" множества). См. Алгоритм, Математическая бесконечность, Множеств теория.
Лит.: [Колмогоров А. Н.], Бесконечность в математике, Большая Советская Энциклопедия, 2 изд., т. 5, М., 1950, с. 73–74; Шанин Η. Α., О некоторых логических проблемах арифметики, М., 1955.
В. Успенский. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. . 1960—1970.

АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ
    АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ — основанный на акте творческого воображения способ образования абстрактных понятий, лежащий в основе формирования одной из наиболее сложных разновидностей идеи бесконечности—идеи актуальной бесконечности. В простейшем случае — при рассмотрении какого-либо необрывающегося конструктивного процесса, порождающего объекты определенного типа,—абстракция актуальной бесконечности состоит в отвлечении от принципиальной незавершаемости этого процесса. Представив его как бы “продолженным до конца” и тем самым завершившимся, вводят в рассмотрение его воображаемый результат—множество (совокупность) всех порожденных им объектов. При этом возникшее таким образом множество в дальнейшем начинают трактовать в качестве актуального, “готового” объекта рассмотрения. Так, отправляясь от процесса последовательного порождения натуральных чисел 0, 1,2, .., в результате применения к нему абстракции актуальной бесконечности приходят к актуально бесконечному объекту — натуральному ряду, который в дальнейшем выступает в качестве наличного объекта, равноправного с составляющими его числами. В более сложных случаях аналогичной процедуре подвергаются “процессы” существенно более сложных типов. В результате объектами рассмотрения становятся актуально бесконечные множества элементов произвольной природы, что приводит к необходимости изучения понятия множества как отдельного абстрактного понятия.
    В отличие от таких абстракций, в основе которых лежат только акты “чистого” мысленного отвлечения, абстракция актуальной бесконечности существенным образом использует акты творческого воображения, решительного отхода от действительности, и это создает определенные методологические трудности, в частности трудности истолкования суждений о возникающих в результате такого абстрагирования объектах. Эти трудности, связанные с косвенным характером “осязаемости” полученных с применением абстракции актуальной бесконечности объектов, оказываются особенно ощутимыми в тех случаях, когда абстракция актуальной бесконечности применяется многократно и в сочетании с другими идеализациями. В логическом аспекте принятие абстракции актуальной бесконечности ведет к обоснованию классической аристотелевской логики, и в частности исключенного третьего закона.
    Особую роль абстракция актуальной бесконечности играет в канторовской “архитектурной программе для математики”, предусматривающей построение математики в виде надстройки над созданной им множеств теорией (точнее было бы, следуя самому Кантору, говорить об учении о множествах). Согласно этой программе, получившей в математике самое широкое распространение, всякий математический объект рассматривается как множество, удовлетворяющее определенному условию, и это обстоятельство делает абстракцию актуальной бесконечности основным в рамках данного подхода объектообразующим фактором. Однако в связи с упоминавшимися выше трудностями неограниченное ее применение в качестве правомерного средства образования математических понятий неоднократно вызывало возражения со стороны ряда выдающихся математиков (К. Ф. Гаусс, Л. Кронекер, Д. Гильберт, Г. Вейль и др.). Альтернативные по отношению к канторовской программы построения математики на базе использования одной лишь абстракции потенциальной осуществимости были предложены Л. Э. Я. Брауэром (см. Интуиционизм) и А. А. Марковым (см. Конструктивное направление). Без использования абстракции актуальной бесконечности обходится также и доказательств теория Д. Гильберта.
    Лит.: Бесконечность в математике (А. Н. Колмогоров). — БСЭ, т. 3. М., 1970; Рейтинг А. Интуиционизм. Введение. М„ 1965; Μάρκο“ А. А. О конструктивной математике.—Труды математического института им. В. А. Стеклова, т. 67. М.—Л., 1962; Кантор Г. О различных точках зрения на актуально бесконечное.—В кн.: Он же. Труды по теории множеств. М., 1985.
    Н. М. Нагорный

Новая философская энциклопедия: В 4 тт. М.: Мысль. . 2001.


.