Akademik

МОДЕЛЬ
МОДЕЛЬ
        (франц. modele, от лат. modulus — мера, образец, норма), в логике и методологии науки — аналог (схема, структура, знаковая система) определ. фрагмента природной или социальной реальности, порождения человеч. культуры, концептуально-теоретич. образования и т. п.— оригинала М. Этот аналог служит для хранения и расширения знания (информации) об оригинале, конструирования оригинала, преобразования или управления им. С гносеологич. т. зр. М.— это «представитель», «заместитель» оригинала в познании и практике. Результаты разработки и исследования М. при определ. условиях, выясняемых в логике и методологии и специфических для различных областей и типов М., распространяются на оригинал. С логич. т. зр. подобное распространение основано на отношениях изоморфизма и гомоморфизма, существующих между М. и тем, что с её помощью моделируется (изоморфный либо гомоморфный образ некоторого объекта и есть его М.), либо на более общих отношениях. Одним из них является следующее: система M1 есть модель системы М2, если существуют изоморфные между собой гомоморфные образы М11 и М21 этих систем (изоморфизм и гомоморфизм оказываются частными случаями данного отношения: первый получается при отождествлении М1 с М11 и М 2с М21 , а второй — при отождествлении элементов в одной из приведённых пар). Данное отношение, являющееся, подобно изоморфизму, отношением типа равенства, придаёт модельному отношению относит. характер, т. к. ставит вопрос о выборе М. и оригинала в зависимость от конкретных постановок задач (напр., при разных т. зр. М. может считаться и аэрофотоснимок местности, и сама местность). Эта ситуация соответствует сложившейся в науке практике оперирования термином «М.»: системы математич. утверждений (аксиом, уравнений), служащие для описания некоторой области (областей) реальных либо абстрактных объектов в таких науках, как физика, космология, математич. лингвистика, математич. экономика, кибернетика, наз. М,, в то время как в логике и математике этот термин имеет противоположный смысл. Под М. здесь понимается интерпретация систем логико-математич. положений. Изучение таких интерпретаций производится в логич. семантике, а также в теории моделей математич. логики, где под М. понимают произвольное множество элементов с определёнными на нём функциями и предикатами. Однако независимо от того, какой член отношения аналог — оригинал рассматривается в качестве М., последняя всегда выполняет поз-нават. роль, выступая средством объяснения, предсказания и эвристики.
        см. Моделирование.
        К лини С. К., Введение в метаматематику, пер. с англ., М., 1957, § 15; Э ш б и У. Р., Введение в кибернетику, пер. с англ., М., 1959, гл. 6; Бир С., Кибернетика и управление производством, пер. с англ., М., 1963; Чжао Юань-жен ь, М. в лингвистике и М. вообще, в сб.: Математич. логика и её применения, пер. с англ., М., 1965; Миллер Д ж., Таланте? ??., ? ? и б р а м К., Планы и структура поведения, пер с англ., М., 1965; Робинсон А., Введение в теорию М. и ме таматема.тику алгебры, пер. сангл., М., 1967; Бирюков Б. В. Геллер E.G., Кибернетика в гуманитарных науках, М. 1973; Налимов В. В., Вероятностная М. языка, ?., 19792

Философский энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

МОДЕЛЬ
(франц. modèle, от лат. modus -образец) - условный образ (изображение, схема, описание и т.п.) к.-л. объекта (или системы объектов). Служит для выражения отношения между человеч. знаниями об объектах и этими объектами; понятие М. широко применяется в семантике, логике, математике, физике, химии, кибернетике, лингвистике и др. науках и их (гл. обр. технич.) приложениях в различных, хотя и тесно связанных между собой, смыслах.
Эти различные понимания могут быть извлечены из след. общего определения. Две системы объектов А и В наз. М. друг друга (или моделирующими одна другую), если можно установить такое гомоморфное отображение системы А на нек-рую систему А´ и гомоморфное отображение В на нек-рую систему В´, что А´иВ´ между собой изоморфны (см. Изоморфизм; данные в этой статье определения следует обобщить, рассматривая отношения не только между элементами, но и - в случае надобности - между подмножествами систем).
Определенное т.о. отношение "быть M." есть рефлексивное, симметричное и транзитивное отношение, т.е. отношение типа эквивалентности (равенства, тождества); ему, в частности (при А=А´ и В=В ), удовлетворяют любые изоморфные друг другу системы.
Понятие М. в науке обычно связывают с применением т.н. метода моделирования (см. Моделирование). В силу вытекающей из определения М. симметричности отношения между к.-л. объектом (системой) и его М. любую из попарно изоморфных систем мы в принципе с равным основанием можем называть М. другой. Напр., в живописи и скульптуре М. наз. изображаемый объект; сравнивая же между собой к.-л. предмет и его фотографию, мы считаем М. именно фотографию. Какая из двух моделирующих друг друга систем (в смысле данного выше определения) при естеств.-науч. моделировании будет выбрана в качестве объекта исследования, а какая в качестве его М., зависит от встающих перед исследователем конкретных познавательно-практич. задач. Вследствие этого обстоятельства, отраженного и в самой грамматич. структуре термина "моделирование", последний имеет нек-рую субъективную окраску (будучи часто связан с тем, к т о "моделирует"). Термин же "М.", лишенный этой окраски, естественнее понимать (а следовательно, и определять) независимо от различных возможных "моделирований". Иначе говоря, если понятие моделирования характеризует выбор средств исследования к.-л. системы, то понятие М. – отношение между существующими (в том или ином смысле) конкретными и (или) абстрактными системами.
Отношение между М. и моделируемой системой зависит от совокупности тех свойств и отношений между объектами рассматриваемых систем, относительно к-рых определяется их изоморфизм и гомоморфизм. Хотя данное выше определение М. настолько широко, что при желании (рассматривая "тривиальный" гомоморфизм каждой системы на множество, состоящее из одного единств. элемента) можно любые две системы счесть М. одна другой, такая широта понятия М. никоим образом не затрудняет применения принципа моделирования в науч. исследовании, поскольку интересующие нас свойства и отношения в принципе всегда могут быть фиксированы. Т.о., понятия М. и моделирования, как и понятия изоморфизма и гомоморфизма, всегда определяются относительно нек-рой совокуп-н о с т и п р е д и к а т о в (свойств, отношений).
Хотя отношение "быть М." симметрично и моделирующие друг друга системы, согласно определению, совершенно равноправны, при употреблении термина "М." почти всегда все же предполагается (часто неявно) нек-рое "моделирование" [напр., моделирование, применяемое в теоретических исследованиях для построения моделей средствами математич. и логич. символики (т.н. абстрактно-логич. моделирование), или моделирование, заключающееся в воспроизведении изучаемых явлений на специально сконструированных М. в эмпирич. науках (э к с п е р и м е н т а л ь н о е моделирование) ]. В зависимости от того, какая из двух сравниваемых систем фиксируется как предмет изучения, а какая в качестве ее М., термин "М." понимается в двух различных смыслах.
В теоретич. науках (особенно в математике, физике) М. к.-л. системы обычно наз. др. систему, служащую описанием исходной системы на языке данной науки; напр., систему дифференц. ур-ний, описывающих протекание во времени к.-л. физич. процесса, наз. М. этого процесса. Вообще, М. – в этом смысле – к.-л. области явлений наз. науч. теорию, предназначенную для изучения явлений из этой области. Аналогично, в (математической) логике М. к.-л. содержат. теории часто наз. формальную систему (исчисление), и н т е р п р е т а ц и е й к-рой является эта теория. [Содержательность, о к-рой здесь идет речь, конечно, относительна; так, интерпретацией к.-л. формальной системы может быть и др. формальная система – см. Интерпретация; с др. стороны, и М. – в этом понимании – вовсе не обязательно должна быть полностью формализована (составляющие ее объекты могут сами рассматриваться с содержат. т.зр., как имеющие определ. смысл); существенным является лишь то, что понятия (термины) "М." истолковываются в терминах и н т е р п р е т а ц и и. ] Такой же характер имеет употребление термина "М." в лингвистике ("модели языка", играющие важную роль как в теоретико-лингвистич. исследованиях, так и в задачах, связанных с построением информационных языков, с разработкой машинного перевода и др.; см. Лингвистика математическая), теоретич. физике (напр., "модели ядра") и вообще во всех тех случаях, когда слово "М." служит синонимом для понятий "теория" и "научное описание".
Не менее распространенным является такое употребление термина "М.", когда под М. понимается не описание, а то, что о п и с ы в а е т с я. При таком употреблении (опять-таки в математич. логике, в аксиоматич. построениях математики, в семантике и др.) термин "М." рассматривается как синоним термина "интерпретация", т.е. М. к.-л. системы соотношений наз. совокупность объектов, удовлетворяющих этой системе. Точнее говоря, синонимами при таком употреблении являются выражения "построить М." и "указать интерпретацию"; иначе говоря, интерпретацией к.-л. системы объектов обычно называют не саму ее M. (т. е. нек-рую др. с и с т е м у), а перечень т.н. с е м а н т и ч е с к и х п р а в и л "перевода" с "языка" моделируемой системы (напр., науч. теории) на "язык" М. Так, интерпретациями геометрии Лобачевского фактически послужили не сами по себе М., предложенные Пуанкаре, итал. ученым Э. Бельтрами и нем. ученым Ф. Клейном, а именно истолкования понятий геометрии Лобачевского в терминах этих М. Впрочем, с содержат. т.зр. выделение к.-л. М. теории в качестве ее интерпретации равносильно указанию семантич. правил, согласно к-рым элементы одной из М. теории рассматриваются в качестве интерпретации ее объектов.
В тех же случаях, когда основным являются не содержательный, а строго формальный аспект понятий М. и интерпретации (в частности, в логич. семантике), эти понятия могут быть уточнены, напр., след. образом:
Пусть А есть формула нек-рого исчисления (формальной системы) L. Результат замены всех входящих в А нелогич. констант (если таковые имеются) переменными соответств. типов (см. Типов теория, Предикатов исчисление) обозначим через А´. Класс предметов N, выполняющих формулу А´ (класс предметов, по определению, выполняет данную формулу, если при такой подстановке имен этих предметов на места всех входящих в нее переменных, что имя одного и того же предмета подставляется на место различных вхождений одной и той же переменной, формула переходит в истинную формулу), - при соблюдении требования, чтобы тип каждого предмета был равен типу переменной, на место к-рой он подставляется, -наз. М. формулы А (или -Μ. предложения, выражаемого этой формулой). Аналогично, если дан класс формул К, то система S классов предметов, элементам каждого из к-рых приписан определ. тип, одновременно выполняющих - при соблюдении вышеуказ. условий - все формулы класса К´ (получающегося из К так же, как А´ из А), наз. М. этого класса формул [имея в виду это понятие М., нек-рые авторы для М. отдельной формулы (предложения) - или, аналогично, отдельного терма (понятия) - употребляют термин "полумодель" ]. Модель S считается М. всего исчисления L, если: 1) все аксиомы исчисления L входят в К (и, следовательно, выполняются системой S); 2) каждая формула из L, выводимая по правилам вывода исчисления L из выполнимых в S формул исчисления L, также выполняется системой S. На основе этого определения легко определяются важнейшие семантич. понятия: "аналитическое" и "синтетическое" (предложения), "экстенсиональное" и "интенсиональное" (выражения) и вообще "семантич. отношение". В такой терминологии легко может быть охарактеризовано отношение логического следования: предложение А следует из предложения В, если и только если А выполняется всеми М., к-рыми выполняется В.
У формальной системы может быть, вообще говоря, много различных М., как изоморфных между собой, так и не изоморфных. Если все М. к.-л. формальной системы изоморфны, то говорят, что лежащая в ее основе система аксиом к а т е г о р и ч н а (см. Категоричность системы аксиом), или п о л н а (в одном из значений этого термина; см. Полнота); в противном случае система наз. н е п о л н о й. (Для произвольной системы аксиом a priori возможен, конечно, и третий случай – отсутствие какой бы то ни было М. Тогда система наз. п р о т и в о р е ч и в о й, или – в соответствии с введенной выше терминологией – н е в ы п о л н и м о й. Обратно, указание М. к.-л. аксиоматич. системы служит доказательством ее непротиворечивости относительно системы, средствами к-рой построена М. – см. также Интерпретация, Метод аксиоматический). В любом из этих случаев одна из М. системы – т.н. выделенная (подразумеваемая при построении системы или рассматриваемая для к.-л. целей) – наз. и н т е р п р е т а ц и е й системы (если же интерпретацию отождествляют с М. – в последнем из употребленных здесь смыслов – то подразумеваемую интерпретацию наз. е с т е с т в е н н о й). Образно говоря, М. мы называем любой возможный "перевод" с языка моделируемой системы на любой др. язык, а интерпретацией – лишь тот из этих переводов (и на тот именно язык), к-рый мы имеем в виду при истолковании понятий системы, считая его (по к.-л. соображениям) единственно верным. Напр., конец англ. фразы "In this way we can obtain only a 50 per cent solution" может быть переведен и как "только 50-процентный раствор" и как "лишь половинное решение", причем легко представить себе конкретный текст, при переводе к-рого потребуются дополнительные (не содержащиеся в нем самом) указания на то, какую из этих "М." выбрать в качестве "интерпретации".
Как известно, фигурирующее в только что приведенном определении понятий М. и интерпретации понятие выполнимости определяется (хотя и не обязательно явным образом) через понятие логической истинности, к-рое в таком случае принимается за первоначальное. С др. стороны, понятие истины в формализованных языках может быть в свою очередь определено через понятие выполнимости. Т.о., "содержательность" понятий M. и интерпретации носит относит. характер – эти понятия определяются в терминах (логической) "истинности", оказывающейся если не "формальным", то во всяком случае формализуемым понятием. Это обстоятельство оправдывает распространенную в математике и логике т.зр., согласно к-рой в с я к а я интерпретация "формальна" (а всякое изучение любой системы объектов есть изучение нек-рой ее М.) в том смысле, что служащая для целей интерпретации М. к.-л. системы должна быть описана в точных терминах (т.к. в противном случае не имеет смысла даже ставить вопрос об ее изоморфизме с какой бы то ни было др. системой); более того, именно само это описание можно рассматривать в этом случае в качестве М. Конечно, этим не снимается важнейший гносеологич. вопрос об адекватности М. – напр., эмпирич. описания – описываемой ею совокупности объектов реального мира, но критерии этой адекватности носят уже существенно внелогич. характер.
Свойства моделей-интерпретаций в математике являются предметом изучения спец. алгебраич. "теории M.", где используется понятие "реляционной системы, т.е. множества, на к-ром определена нек-рая совокупность предикатов (свойств, операций, отношений) (ср. определения в ст. Изоморфизм). Следует иметь в виду, что природа математич. М. бывает очень сложной и даже "парадоксальной" (т. е. не соответствующей укоренившимся представлениям, из чего, однако, не следует их логич. противоречивость).
Примером могут служить т.н. "нестандартные" М. аксиоматич. систем, характеризующиеся тем, что "исходный" натуральный ряд чисел (используемый в теории, средствами к-рой строится М.) оказывается неизоморфным натуральному ряду, построенному в М. (здесь речь идет об обычной, традиционной математике, исходящей, в отличие от т.н. ультра-интуиционистской, из предположения об однозначной – с точностью до изоморфизма – определенности множества натуральных чисел); отношение "быть М." трактуется при этом, конечно, как существенно несимметричное.
Для совр. этапа развития науки характерно интенсивное расширение запаса применяемых в науч. исследовании способов построения и использования различных М. Особенно плодотворным в этом отношении оказался "кибернетич." подход к исследованию систем различной природы. Применяемые в наст. время науч. М. способствуют изучению не только структуры, но и ф у н к ц и о н и р о в а н и я весьма сложных систем (в т.ч. объектов живой природы). Расширение понятия моделирования (и М.), предполагающее учет не только структурных, но и функциональных свойств и отношений, может быть достигнуто по меньшей мере двумя (родственными) путями. Во-первых, можно потребовать, чтобы описание каждого элемента М. (и, конечно, моделируемой системы) включало в себя временную характеристику (как это, напр., принято в нек-рых разделах теоретич. физики – см. Континуум, Относительности теория); этот путь по существу означает, что введение параметра времени свело бы понятие функционирования к общему понятию "пространственно-временнóй структуры".
Во-вторых, пользуясь точным математич. понятием функции (в логич. генезис к-рого, как известно, понятие "временнóй переменной" не входит), можно с самого начала считать элементами, из к-рых строится М., именно функции, описывающие изменение во времени элементов "статической" (т. е. "структурной") М. (используя для обобщенных т. о. определений изоморфизма, гомоморфизма и М. аппарат исчисления предикатов второй ступени – см. Предикатов исчисление). Именно в таком расширенном смысле говорят не просто о моделировании систем, но и о моделировании процессов (химич., физич., производственных, экономич., социальных, биологич. и др.). Примером описания к.-л. процесса, служащего для цели его моделирования, может служить схема его алгоритма; возможность четкого определения понятия алгоритма открыла, в частности, широкие возможности моделирования различных процессов с помощью программирования на электронно-вычислит. (цифровых) машинах. Др. пример "машинного" моделирования – использование т.н. аналоговых машин непрерывного действия [см. Техника(раздел Вычислительная техника) ].
Как это часто происходит в ходе развития науки, термин "М." применяется р а с ш и р и т е л ь н ы м образом и в тех случаях, когда предварит. учет всех подлежащих воспроизведению при моделировании параметров (необходимый для буквального понимания термина) оказывается, ввиду сложности моделируемой системы, практически невозможным. Это относится, в частности, к изменяющимся во времени т.н. самонастраивающимся М., напр. к "моделям обучения". Но даже если остаться в рамках точных определений, то в кибернетике (как и в физике, а также в математике и логике) понятие М. используется в обоих упомянутых выше смыслах [характерен следующий важный пример: "запись" наследств. информации в хромосомах м о д е л и р у е т родительский организм (или организмы) и в то же время м о д е л и р у е т с я в организме потомка ]. Эта кажущаяся двусмысленность термина "М." (снимаемая, впрочем, предложенным выше общим определением М., охватывающим оба смысла) на самом деле служит примером т.н. "оборачивания метода", характерного для конкретных применений многих гносеологич. понятий.
Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, гл. 3, § 15; Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959, гл. 6; Лахути Д. Г., Ρевзин И. И., Финн В. К., Об одном подходе к семантике, "Филос. науки" (Науч. докл. высш. школы), 1959, No 1; Черч Α., Введение в математическую логику, пер. с англ., [т. ] 1, М., 1960, §7; Ревзин И. И., Модели языка, М., 1962; Генкин Л., О математич. индукции, пер. с англ., М., 1962; Моделирование в биологии. [Сб. ст. ], пер. с англ.,М., 1963; Молекулярная генетика. Сб. ст., пер. с англ. и нем., М., 1963; Бир С., Кибернетика и управление производством, пер. с англ., М., 1963; Саrnаp R., The logical syntax of language, L., 1937; Кemeny J. G., Models of logical systems, "J. Symbolic Logic", 1948, v. 13, No 1; Rosser J. В., Wang H., Non-standard models of formal logics, "J. Symbolic Logic", 1950, v. 15, No 2; Mostowaki Α., On models of axiomatic systems, "Fundamenta Math.", 1953, v. 39; Tarski Α., Contributions to the theory of models, [pt ] 1–3, "Indagationes Math.", 1954, v. 16, 1955, v. 17; Mathematical interpretation of formal systems, Amst., 1955; Кemeny J. G., A new approach to semantics, "J. Symbolic Logic", 1956, v. 21, [No ] 1, 2; Sсоtt D., Suppes P., Foundational aspects of theories of measurement, "J. Symbolic Logic", 1958, v. 23, No 2; Rоbinsоn Α., Introduction to model theory and to the metamathematics of algebra, Amst., 1963; Сurrу H. В., Foundations of mathematical logic, N. Y., 1963.
Ю. Гастев. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. . 1960—1970.


.