Akademik

ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЁТА
ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЁТА

       
система отсчёта, в к-рой справедлив закон инерции: матер. точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система отсчёта, движущаяся по отношению к И. с. о. поступательно, равномерно и прямолинейно, есть также И. с. о. Следовательно, теоретически может существовать любое число равноправных И. с. о., обладающих тем важным св-вом, что во всех таких системах законы физики одинаковы (принцип относительности). В любой И. с. о. справедливы также второй закон Ньютона и законы сохранения кол-ва движения (импульса), момента кол-ва движения и движения центра инерции (центра масс) для замкнутых, не подверженных внеш. воздействиям систем. Система отсчёта, движущаяся по отношению к И. с. о. с ускорением, явл. неинерциальной, и ни закон инерции, ни др. названные законы в ней не выполняются.
Понятие «И. с. о.» явл. научной абстракцией. Реальная система отсчёта всегда связывается с к.-н. конкретным телом (Землёй, корпусом корабля или самолёта и т. п.), по отношению к к-рому и изучается движение тех или иных объектов. Поскольку в природе нет неподвижных тел (тело, неподвижное относительно Земли, будет двигаться вместе с нею ускоренно по отношению к Солнцу и звёздам), то любая реальная система отсчёта может рассматриваться как И. с. о. лишь с той или иной степенью приближении. С очень высокой степенью точности инерциальной можно считать гелиоцентрическую (звёздную) систему с началом в центре масс Солн. системы и с осями, направленными на три звезды. Такая И. с. о. используется гл. обр. в задачах небесной механики и космонавтики. Для решения большинства технич. задач И. с. о. можно считать систему, жёстко связанную с Землёй, а в случаях, требующих большей точности (напр., в гироскопии),— с началом в центре Земли и осями, направленными на звёзды.
При переходе от одной И. с. о. к другой в классич. механике Ньютона для пространств. координат и времени справедливы преобразования Галилея (см. ГАЛИЛЕЯ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ), а в релятив. механике — Лоренца преобразования.

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЁТА
- система отсчёта, в к-рой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система отсчёта, движущаяся по отношению к И. с. о. поступательно, равномерно и прямолинейно, есть также И. с. о. Следовательно, теоретически может существовать любое число равноправных И. с. о., обладающих тем важным свойством, что во всех таких системах законы физики одинаковы (принцип относительности). Система отсчёта, движущаяся по отношению к И. с. о. с ускорением, неинерциальна, и закон инерции в ней не выполняется. Понятие И. с. о. является научной абстракцией. Реальная система отсчёта всегда связывается с к.-н. конкретным телом (землёй, корпусом корабля или самолёта и т. п.), по отношению к к-рому и изучается движение разл. объектов. Поскольку все реальные тела движутся с тем или иным ускорением, любая реальная система отсчёта может рассматриваться как И. с. о. лишь с определ. степенью приближения. С очень высокой степенью точности инерциальной можно считать гелиоцентрич. систему, связанную с центром масс Солнечной системы и с осями, направленными на три далёкие звезды. Такая И. с. о. используется гл. обр. в задачах небесной механики и космонавтики. Для решения большинства техн. задач И. с. о. можно считать систему, жёстко связанную с Землёй, а в случаях, требующих большей точности (напр., в гироскопии), - с центром масс Земли и осями, направленными на далёкие звёзды. При переходе от одной И. с. о. к другой в классич. механике Ньютона для пространств, координат и времени справедливы преобразования Галилея (см. Галилея принцип относительности), а в релятив. механике - Лоренца преобразования. Лит. см. при ст. Механика, Относительности теория.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.