- ТЕРМОЯДЕРНЫЙ РЕАКТОР
-
разрабатываемое в наст. время (80-е гг.) устройство для получения энергии за счёт реакций синтеза лёгких ат. ядер, происходящих при очень высоких темп-рах (=108 К). Осн. требование, к-рому должен удовлетворять Т. р., заключается в том, чтобы энерговыделение в результате термоядерных реакций с избытком компенсировало затраты энергии от внеш. источников на поддержание реакции.Различают два типа Т. р. К первому типу относятся Т. р., к-рым необходима энергия от внеш. источников только для зажигания термояд. реакций. Далее реакции поддерживаются за счёт энергии, выделяющейся в плазме при термояд. реакциях; напр., в дейтерий-тритиевой смеси на поддержание высокой темп-ры плазмы расходуется энергия a-частиц, образующихся в ходе реакций. В стационарном режиме работы Т. р. энергия, к-рую несут a-частицы, компенсирует энергетич. потери из плазмы, обусловленные в основном теплопроводностью плазмы и излучением. К такому типу Т. р. относится, напр., токамак.К др. типу Т. р. относятся реакторы, в к-рых для поддержания горения реакций недостаточно энергии, выделяющейся в виде a-частиц, а необходима энергия от внеш. источников. Это происходит в тех реакторах, в к-рых велики энергетич. потери, напр. открытая магнитная ловушка.Т. р. могут быть построены на основе систем с магн. удержанием плазмы, таких, как токамак, стелларатор, открытая магн. ловушка и др., или систем с инерционным удержанием плазмы, когда в плазму за короткое время (10-8—10-7 с) вводится энергия (либо с помощью излучения лазера, либо с помощью пучков релятив. эл-нов или ионов), достаточная для возникновения и поддержания реакций. Т. р. с магн. удержанием плазмы может работать в квазистационарном или стационарном режимах. В случае инерционного удержания плазмы Т. р. должен работать в режиме коротких импульсов.Т. р. характеризуется коэфф. усиления мощности (добротностью) Q, равным отношению тепловой мощности, получаемой в реакторе, к мощности затрат на её произ-во. Тепловая мощность Т. р. складывается из мощности, выделяющейся при термояд. реакциях в плазме, и мощности, выделяющейся в т. н. бланкете Т. р.— специальной оболочке, окружающей плазму, в к-рой используется энергия термояд, нейтронов. Наиболее перспективным представляется Т. р., работающий на дейтерий-тритиевой смеси за счёт большей скорости протекания реакций, чем при др. реакциях синтеза.Т. р. на дейтерий-тритиевом топливе в зависимости от состава бланкета может быть «чистым» или гибридным. Бланкет «чистого» Т. р. содержит Li; в нём под действием нейтронов получается тритий, «сгорающий» в дейтерий-тритиевой плазме, и происходит усиление энергии термояд. реакции с 17,6 до 22,4 МэВ. В бланкете гибридного Т. р. не только воспроизводится тритий, но имеются зоны, при помещении в к-рые 238U можно получать 239Pu (см. ЯДЕРНЫЙ РЕАКТОР). Одновременно в бланкете выделяется энергия, равная прибл. 140 МэВ на один термояд. нейтрон. Т. о., в гибридном Т. р. можно получать примерно в шесть раз больше энергии, чем в «чистом» Т. р., но наличие в первом делящихся радиоакт. в-в создаёт обстановку, близкую той, к-рая существует в яд. реакторах деления.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- ТЕРМОЯДЕРНЫЙ РЕАКТОР
-
-разрабатываемое в 1990-х гг. устройство для получения энергии за счёт реакций синтеза лёгких атомных ядер, происходящих в плазме при очень высоких темп-pax (108 К). Осн. требование, к-рому должен удовлетворять T. р., заключается в том, чтобы энерговыделение в результате термоядерных реакций(TP) с избытком компенсировало затраты энергии от внеш. источников на поддержание реакции.
Различают два типа T. р. К первому относятся реакторы, к-рым энергия от внеш. источников необходима только для зажигания TP. Далее реакции поддерживаются за счёт энергии, выделяющейся в плазме при TP, напр. в дейтерий-тритиевой смеси на поддержание высокой темп-ры расходуется энергия a-частиц, образующихся в ходе реакций. В смеси дейтерия с 3He энергия всех продуктов реакций, т. е. a-частиц и протонов, расходуется на поддержание необходимой темп-ры плазмы. В стационарном режиме работы T. р. энергия, к-рую несут заряж. продукты реакций, компенсирует энергетич. потери из плазмы, обусловленные в осн. теплопроводностью плазмы и излучением. Такие реакторы наз. реакторами с зажиганием самоподдерживающейся термоядерной реакции (см. Зажигания критерий). Пример такого T. р.: токамак, стелларатор.
К др. типу T. р. относятся реакторы, в к-рых для поддержания горения реакций недостаточно энергии, выделяющейся в плазме в виде заряж. продуктов реакций, а необходима энергия от внеш. источников. Такие реакторы принято называть реакторами с поддержанием горения термоядерных реакций. Это происходит в тех T. р., где велики энергетич. потери, напр. открытая магн. ловушка, токамак, работающий в режиме по плотности и темп-ре плазмы ниже кривой зажигания TP. Эти два типа реакторов включают все возможные виды T. р., к-рые могут быть построены на основе систем с магн. удержанием плазмы (токамак, стелларатор, открытая магн. ловушка и др.) или систем с инерциальным удержанием плазмы.
Международный термоядерный экспериментальный реактор ИТЭР: 1 - центральный соленоид; 2 - бланкет - защита; 3 - плазма; 4 - вакуумная стенка; 5 - трубопровод откачки; 6- криостат; 7- катушки активного управления; 8 - катушки тороидального магнитного поля; 9 - первая стенка; 10 - диверторные пластины; 11 - катушки полоидального магнитного поля.
Реактор с инерциальным удержанием плазмы характеризуется тем, что в него за короткое время (10 -8-10-7 с) с помощью либо излучения лазера, либо пучков релятивистских электронов или ионов вводится энергия, достаточная для возникновения и поддержания TP. Такой реактор будет работать только в режиме коротких импульсов, в отличие от реактора с магн. удержанием плазмы, к-рый может работать в квазистационарном или даже стационарном режимах.
T. р. характеризуется коэф. усиления мощности (добротностью) Q, равным отношению тепловой мощности реактора к мощности затрат на её производство. Тепловая мощность реактора складывается из мощности, выделяющейся при TP в плазме, мощности, к-рая вводится в плазму для поддержания темп-ры горения TP или поддержания стационарного тока в плазме в случае токамака, и мощности, выделяющейся в т. н. б л а н к е т е и в радиац. защите T. р.- спец. оболочке, окружающей плазму, в к-рой утилизуется энергия термоядерных нейтронов и к-рая служит защитой сверхпроводящих магн. катушек от нейтронного и радиоакт. излучений.
Разработка T. р. с магн. удержанием более продвинута, чем систем с инерциальным удержанием. Схема Международного термоядерного эксперим. реактора-токамака ИТЭР, проект к-рого разрабатывается с 1988 четырьмя сторонами - СССР (с 1992 Россия), США, странами Евратома и Японией,-представлена на рисунке. T. р. имеет след. параметры: большой радиус плазмы 8,1 м; малый радиус плазмы в ср. плоскости 3 м; вытянутость сечения плазмы 1,6; тороидальное магн. поле на оси 5,7 Тл; номинальный ток плазмы 21 MA; номинальная термоядерная мощность с DT топливом 1500 МВт. Реактор содержит след. осн. узлы: центр. соленоид I, электрич. поле к-рого осуществляет пробой газа, регулирует нарастание тока и поддерживает его вместе со спец. системой дополнит. нагрева плазмы; первая стенка 9, к-рая непосредственно обращена к плазме и воспринимает потоки тепла в виде излучения и нейтральных частиц; бланкет - защита 2, к-рые явл. неотъемлемой частью T. р. на дейтерий-три-тиевом (DT) топливе, т. к. в бланкете воспроизводится сгоревший в плазме тритий. T. р. на DT топливе в зависимости от материала бланкета может быть "чистым" или гибридным. Бланкет "чистого" T. р. содержит Li; в нём под действием термоядерных нейтронов получается тритий: 6Li +nT+ 4He+ 4,8 МэВ, и происходит усиление энергии TP с 17,6 МэВ до 22,4 МэВ. В бланкете гибридного термоядерного реактора не только воспроизводится тритий, но имеются зоны, в к-рые помещается отвальный 238U для получения 239Pu. Одновременно в бланкете выделяется энергия, равная 140 МэВ на один термоядерный нейтрон. T. о., в гибридном T. р. можно получать примерно в шесть раз больше энергии на один исходный акт синтеза, чем в "чистом" T. р., но наличие в первом случае делящихся радиоакт. веществ создаёт радиац. обстановку, близкую той, к-рая существует в ядерных реакторах деления.
В T. р. с топливом на смеси D с 3He бланкет отсутствует, т. к. нет необходимости воспроизводить тритий: D + 3He4He (3,6 МэВ) + р(14,7 МэВ), и вся энергия выделяется в виде заряж. продуктов реакции. Радиац. защита предназначена для поглощения энергии нейтронов и радиоакт. излучения и уменьшения потоков тепла и излучений на сверхпроводящую магн. систему до приемлемого для стационарной работы уровня. Катушки тороидального магн. поля 8 служат для создания тороидального магн. поля и изготавливаются сверхпроводящими с использованием сверхпроводника Nb3Sn и медной матрицы, работающих при темп-ре жидкого гелия (4,2 К). Развитие техники получения высокотемпературной сверхпроводимости может позволить исключить охлаждение катушек жидким гелием и перейти на более дешёвый способ охлаждения, напр. жидким азотом. Конструкция реактора при этом существенно не изменится. Катушки полоидального поля 11 являются также сверхпроводящими и вместе с магн. полем тока плазмы создают равновесную конфигурацию полоидального магн. поля с одно или двухну-левым полоидальным д и в е р т о р о м 10, служащим для отвода тепла из плазмы в виде потока заряж. частиц и для откачки нейтрализованных на диверторных пластинах продуктов реакции: гелия и протия. В T. р. с D 3He топливом диверторные пластины могут служить одним из элементов системы прямого преобразования энергии заряж. продуктов реакции в электроэнергию. Криостат 6 служит для охлаждения сверхпроводящих катушек до темп-ры жидкого гелия или более высокой темп-ры при использовании более совершенных высокотемпературных сверхпроводников. Вакуумная камера 4 и средства откачки 5 предназначены для получения высокого вакуума в рабочей камере реактора, в к-рой создаётся плазма 3, и во всех вспомогательных объёмах, включая криостат.
В качестве первого шага на пути создания термоядерной энергетики представляется T. р., работающий на DT смеси за счёт большей скорости протекания реакций, чем при др. реакциях синтеза. В перспективе рассматривается возможность создания малорадиоактивного T. р. на смеси D с 3He, в к-ром осн. энергию несут заряж. продукты реакции, а нейтроны возникают лишь в DD и в DT реакциях при выгорании рождающегося в DD реакциях трития. В результате биол. опасность T. р. может быть, по-видимому, снижена на четыре-пять порядков величины по сравнению с ядерными реакторами деления, отпадает необходимость промышл. обработки радиоакт. материалов и их транспортировки, качественно упрощается захоронение радиоакт. отходов. Впрочем, перспективы создания в будущем экологически чистого T. р. на смеси D с 3 Не осложняются проблемой сырья: естеств. концентрации изотопа 3He на Земле составляют миллионные доли от изотопа 4He. Поэтому возникает трудный вопрос получения исходного сырья, напр. путём доставки его с Луны.
Лит.: Пистунович В. И., Шаталов Г. E., Термоядерный реактор на основе токамака, в сб.: Итоги науки и техники, сер. Физика плазмы, т. 2, M., 1981; Кадомцев Б. Б., Пистунович В. И., Международный токамак-реактор ИНТОР. Фаза 1, "Атомная энергия", 1983, т. 54, в. 2, с. 83; Kadomtsev B. В. [е. a.], OTR-experimental fusion-fission tokamak-reactor concept, в кн.: Fusion reactor design and technology 1986, Vienna, 1987; Report of the International tokamak reactor workshop, organized by Atomic eneargy Agency. Phase 2A, pt. 3, v. 1, Vienna, 1988; ITER Concept Definition, v. 2, Vienna, 1990; Proceedings of Second Wisconsin Symposium on helium-3 and fusion power Madison, Wisconsin, 19-21 July 1993; Головин И. H., Энергетика 21-го века и термоядерные реакторы, сжигающие гелий-3, препринт ИАЭ-5522/8, M., 1992.
В. И. Пистунович.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.