Akademik

УПРУГИЕ ВОЛНЫ
УПРУГИЕ ВОЛНЫ

       
упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах, напр. волны, возникающие в земной коре при землетрясениях, звук. и ультразвук. волны в жидкостях, газах и тв. телах. При распространении У. в. в среде возникают механич. деформации сжатия и сдвига, к-рые переносятся волной из одной точки среды в другую. При этом имеет место перенос энергии упругой деформации в отсутствие потока в-ва (исключая особые случаи, напр. акустические течения). Всякая гармонич. У. в. характеризуется амплитудой колебательного смещения частиц среды и его направлением, колебательной скоростью частиц, переменным механич. напряжением и деформацией (к-рые в общем случае явл. тензорными величинами), частотой колебаний ч-ц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны.
В жидкостях и газах, к-рые обладают упругостью объёма, но не обладают упругостью формы, могут распространяться лишь продольные волны разрежения-сжатия, где колебания ч-ц среды происходят в направлении распространения волны. Фазовая скорость их
cl=O(K/r),
где К — модуль всестороннего сжатия, r — плотность среды.
Пример таких У. в.— звук. волны.
В однородной изотропной бесконечно протяжённой тв. среде могут распространяться У. в. только двух типов — продольные и сдвиговые. В продольных движение ч-ц параллельно направлению распространения волны, а деформация представляет собой комбинацию всестороннего сжатия (растяжения) и чистого сдвига. В сдвиговых волнах движение ч-ц перпендикулярно направлению распространения волны, а деформация явл. чистым сдвигом. В безграничной среде распространяются продольные и сдвиговые волны трёх типов — плоские, сферические и цилиндрические. Их особенность — независимость фазовой и групповой скоростей от амплитуды и геометрии волны. Фазовая скорость продольных волн в неограниченной тв. среде сl=O((К+4/3G)/r), сдвиговых ct=O(G/r) (G — модуль сдвига). Величины cl и сt для разных сред колеблются в пределах от сотен до неск. тысяч м/с.
На границе тв. полупространства с вакуумом, газом, жидкостью или с др. тв. полупространством могут распространяться упругие поверхностные волны (см. ПОВЕРХНОСТНЫЕ АКУСТИЧЕСКИЕ ВОЛНЫ), являющиеся комбинацией неоднородных продольных и сдвиговых волн, амплитуды к-рых экспоненциально убывают при удалении от границы.
В ограниченных тв. телах (пластина, стержень), представляющих собой тв. волноводы акустические, могут распространяться только нормальные волны, каждая из к-рых явл. комбинацией неск. продольных и сдвиговых волн, распространяющихся под острыми углами к оси волновода и удовлетворяющих граничным условиям: отсутствию механич. напряжений на поверхности волновода. Число n норм. волн в пластине или стержне определяется толщиной или диаметром d, частотой w и модулями упругости среды. При увеличении wd число норм. волн возрастает, и при wd®? n®?. Норм. волны характеризуются дисперсией фазовой и групповой скорости (см. ДИСПЕРСИЯ ЗВУКА).
В бесконечной пластине существуют два типа норм. волн — Лэмба волны и сдвиговые волны. Плоская волна Лэмба характеризуется двумя составляющими смещений, одна из к-рых параллельна направлению распространения волны, другая — перпендикулярна граням пластины. В плоской сдвиговой норм. волне смещения параллельны граням пластины и одновременно перпендикулярны направлению распространения волны. В цилиндрич. стержнях могут распространяться норм. волны трёх типов — продольные, изгибные и крутильные.
В анизотропных средах (кристаллах) св-ва У. в. зависят от типа кристалла и направления распространения. В частности, чисто продольные и чисто сдвиговые волны могут распространяться только в кристаллах определ. симметрии и по определ. направлениям, как правило, совпадающим с направлением кристаллографич. осей. В общем случае в кристалле по любому направлению всегда распространяются три волны с тремя разл. скоростями: одна квазипродольная и две квазипоперечные, в к-рых преобладают соотв. продольные или поперечные смещения (см. КРИСТАЛЛОАКУСТИКА). При распространении У. в. в кристаллах может возникнуть ряд специфич. эффектов, напр. различие в направлениях фазовой и групповой скорости, усиление УЗ за счёт акустоэлектронного взаимодействия, дислокационное поглощение.
В любой упругой среде из-за внутр. трения и теплопроводности распространение У. в. сопровождается её поглощением (см. ПОГЛОЩЕНИЕ ЗВУКА). Если на пути У. в. имеется к.-л. препятствие (отражающая стенка, вакуумная полость и т. д.), то происходит дифракция волн на этом препятствии. Простейший случай дифракции — отражение и прохождение У. в. на плоской границе двух полупространств.
В У. в. механич. напряжения пропорц. деформациям (см. ГУКА ЗАКОН). Если амплитуда деформации в тв. теле превосходит предел упругости материала, в волне появляются пластич. деформации и её наз. упругопластич. волной. Аналогом таких волн в жидкостях и газах являются волны т. н. конечной амплитуды. Скорость их распространения зависит от величины деформации.
Диапазон частот У. в. простирается от малых долей Гц до 1013 Гц. В последнем случае длины У. в. становятся сравнимыми с параметрами крист. решётки и их можно рассматривать как фононы. Область применения У. в. чрезвычайно широка: низкочастотные У. в. используются в сейсмологии (для регистрации землетрясений) и в сейсморазведке. У. в. килогерцевого диапазона применяются в гидролокации и при исследованиях океана. У. в. ультра- и гиперзвук. диапазона используются в физике для определения разл. параметров твёрдых, жидких и газообразных сред, применяются в акустоэлектронике, в промышленности для технол. и контрольно-измерит. целей, в медицине и др. областях. (см. ГИПЕРЗВУК, УЛЬТРАЗВУК).

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

УПРУГИЕ ВОЛНЫ

- упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразных средах, напр, волны, возникающие в земной коре при землетрясениях, звуковые и ультразвуковые волны в жидкостях, газах и твёрдых телах. При распространении У. в. в среде возникают механич. деформации сжатия и сдвига, к-рые переносятся волной из одной точки среды в другую. При этом имеет место перенос энергии упругой деформации в отсутствие потока вещества (исключая особые случаи, напр. акустические течения). Всякая гармонич. У. в. характеризуется амплитудой колебат. смещения частиц среды и его направлением, колебат. скоростью частиц, перем. механич. напряжением и деформацией (к-рые в общем случае являются тензорными величинами), частотой колебаний частиц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны.

В жидкостях и газах, к-рые обладают упругостью объёма, но не обладают упругостью формы, могут распространяться лишь продольные волны разрежения-сжатия, где колебания частиц среды происходят в направлении распространения волны. Фазовая скорость их 5044-50.jpg где К- модуль всестороннего сжатия, р - плотность среды. Пример таких У. в.- звуковые волны.

В однородной изотропной бесконечно протяжённой твёрдой среде могут распространяться У. в. только двух типов - продольные и сдвиговые. В продольных У. в. движение частиц параллельно направлению распространения волны, а деформация представляет собой комбинацию всестороннего сжатия (растяжения) и чистого сдвига. В сдвиговых волнах движение частиц перпендикулярно направлению распространения волны, а деформация является чистым сдвигом. В безграничной среде распространяются продольные и сдвиговые волны трёх типов - плоские, сферические и цилиндрические. Их особенность - независимость фазовой и групповой скоростей от амплитуды и геометрии волны. Фазовая скорость продольных волн в неограниченной твёрдой среде 5044-51.jpg сдвиговых волн-5044-52.jpg (G - модуль сдвига). Величины с i и ct для разных сред колеблются в пределах от сотен до неск. тысяч м/с.

На границе твёрдого полупространства с вакуумом, газом, жидкостью или с др. твёрдым полупространством могут распространяться упругие поверхностные волны (см. Поверхностные акустические волны), являющиеся комбинацией неоднородных продольных и сдвиговых волн, амплитуды к-рых экспоненциально убывают при удалении от границы.

В ограниченных твёрдых телах (пластина, стержень), представляющих собой твёрдые волноводы акустические, могут распространяться только нормальные волны, каждая из к-рых является комбинацией неск. продольных и сдвиговых волн, распространяющихся под острыми углами к оси волновода и удовлетворяющих граничным условиям: отсутствию механич. напряжений на поверхности волновода. Число п нормальных волн в пластине или стержне определяется толщиной или диаметром d, частотой w и модулями упругости среды. При увеличении 5044-53.jpgчисло нормальных волн возрастает, и при 5044-54.jpg . Нормальные волны характеризуются дисперсией фазовой и групповой скоростей.

В бесконечной пластине существуют два типа нормальных волн-Лэмба волны и сдвиговые волны. Плоская волна Лэмба характеризуется двумя составляющими смещений, одна из к-рых параллельна направлению распространения волны, другая-перпендикулярна граням пластины. В плоской сдвиговой нормальной волне смещения параллельны граням пластины и одновременно перпендикулярны направлению распространения волны. В ци-линдрич. стержнях могут распространяться нормальные волны трёх типов - продольные, изгибные, крутильные.

В анизотропных средах (кристаллах) свойства У. в. зависят от типа кристалла и направления распространения. В частности, чисто продольные и чисто сдвиговые волны могут распространяться только в кристаллах определ. симметрии и по определ. направлениям, как правило, совпадающим с направлением кристаллографич. осей. В общем случае в кристалле по любому направлению всегда распространяются три волны с тремя разл. скоростями: одна квазипродольная и две квазипоперечные, в к-рых преобладают соответственно продольные или поперечные смещения (см. Кристаллоакустика). При распространении У. в. в кристаллах может возникнуть ряд специфич. эффектов, напр, различие в направлениях фазовой и групповой скоростей, усиление ультразвука за счёт акустоэлектрон-ного взаимодействия, дислокац. поглощение.

В любой упругой среде из-за внутр. трения и теплопроводности распространение У. в. сопровождается её поглощением (см. Поглощение звука). Если на пути У. в. имеется к.-л. препятствие (отражающая стенка, вакуумная полость и т. д.), то происходит дифракция волн на этом препятствии; простейший случай дифракции - отражение и прохождение У. в. на плоской границе двух полупространств.

В У. в. механич. напряжения пропорц. деформациям ( Тука закон). Если амплитуда деформации в твёрдом теле превосходит предел упругости материала, в волне появляются пластич. деформации и её наз. упругопластической волной. Аналогом таких волн в жидкостях и газах являются волны т. н. конечной амплитуды. Скорость их распространения зависит от величины деформации.

Диапазон частот У. в. простирается от малых долей Гц до 1013 Гц. В последнем случае длины У. в. становятся сравнимыми с параметрами кристаллич. решётки.

Область применения упругих волн чрезвычайно широка: низкочастотные упругие волны используются в сейсмологии (для регистрации землетрясений), в сейсморазведке. У. в. килогерцевого диапазона применяются в гидролокации и при исследованиях океана. У. в. ультра- и гиперзвукового диапазонов служат в физике для определения разл. параметров твёрдых, жидких и газообразных сред, применяются в акустоэлектронике, в промышленности для тех-нол. и контрольно-измерит. целей, в медицине и др. областях. См. также Гиперзвук, Ультразвук.

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория упругости, 4 изд., М., 1987; Кольский Г., Волны напряжения в твердых телах, пер. с англ., М., 1955; Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Бре-ховских Л. М., Волны в слоистых средах, 2 изд., М., 1973, гл. I; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 1-2, 6; т. 4, ч. А, М., 1969, гл. I; Викторов И. А., Физические основы применения ультразвуковых волн Рэлея и Лэм-ба в технике, М., 1966. И. А. Викторов.


Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.