- ТОРМОЗНОЕ ИЗЛУЧЕНИЕ
-
злектромагн. излучение, испускаемое заряж. ч-цей при её рассеянии (торможении) в электрич. поле. Иногда к Т. и. относят также излучение релятив. заряж. ч-ц, движущихся в макроскопич. магн. полях (в ускорителях, в косм. пр-ве), и называют его магнитотормозным; однако более употребителен в этом случае термин синхротронное излучение.Согласно классич. электродинамике, к-рая с хорошим приближением описывает осн. закономерности Т. и., его интенсивность пропорц. квадрату ускорения заряж. ч-цы (см. ИЗЛУЧЕНИЕ). Т. к. ускорение обратно пропорц. массе m ч-цы, то в одном и том же поле Т. и. легчайшей заряж. ч-цы — эл-на будет, напр., в миллионы раз мощнее излучения протона. Поэтому чаще всего наблюдается и практически используется Т. и., возникающее при рассеянии эл-нов на электростатич. поле ат. ядер и эл-нов; такова, в частности, природа тормозного рентгеновского излучения и гамма-излучения, испускаемых быстрыми эл-нами при прохождении их через в-во.Интенсивность Т. и. эл-на пропорц. также квадрату ат. номера Z ядра, в поле к-рого он тормозится (по закону Кулона сила f вз-ствия эл-на с ядром пропорц. заряду ядра Ze, где е — элем. электрич. заряд, а ускорение определяется вторым законом Ньютона: а=f/m).Спектр фотонов Т. и. непрерывен и обрывается при максимально возможной энергии, равной нач. энергии эл-на. При движении в в-ве эл-н с энергией выше нек-рой критич. энергии ?0 тормозится преим. за счёт Т. и. (при меньших энергиях преобладают потери на возбуждение и ионизацию атомов). Напр., для свинца ?0»10 МэВ, для воздуха — 200 МэВ.Рис. 1. Теор. спектры энергии ?g фотонов тормозного излучения с учётом экранирования в свинце (четыре верхние кривые) и в алюминии (нижняя кривая); цифры на кривых — нач. кинетич. энергия Tе эл-на в ед. энергии покоя эл-на mec2»0,511 МэВ (интенсивность I дана в относит. единицах).Наиболее точное описание Т. и. даёт квантовая электродинамика. При не очень высоких энергиях эл-на хорошее согласие теории с экспериментом достигается при рассмотрении рассеяния эл-нов только в кулоновском поле ядра. Согласно квант. электродинамике, в поле ядра существует определ. вероятность квант. перехода эл-на в состояние с меньшей энергией с испусканием, как правило, одного фотона (вероятность излучения большого числа фотонов мала). Поскольку энергия фотона ?gравна разности нач. и кон. энергий эл-на, спектр Т. и. (рис. 1) имеет резкую границу при энергии фотона, равной нач. кинетич. энергии эл-на Те. Т. к. вероятность излучения в элем. акте рассеяния пропорц. Z2, то для увеличения выхода фотонов Т. и. в электронных пучках используются мишени из в-в с большими Z (свинец, платина и т. п.). Угл. распределение Т. и. существенно зависит от Te: в нерелятив. случае (Tемасса эл-на) Т. и. подобно излучению электрич. диполя, перпендикулярного к плоскости траектории эл-на. При ультрарелятив. энергиях (Те->meс2) Т. и. направлено вперёд по движению эл-на и концентрируется в пределах конуса с угл. раствором q»mec2/Tе рад (рис. 2); это св-во используется для получения интенсивных пучков фотонов высокой энергии (g-квантов) на электронных ускорителях. Т. и. частично поляризовано. Рис. 2. Угл. распределение тормозного излучения при ультрарелятив. нач. энергиях эл-нов Т e->meс2.Дальнейшее уточнение теории Т. и. достигается учётом экранирования кулоновского поля ядра ат. эл-нами. Поправки на экранирование, существенные при Te->mec2 и ?g-Te, приводят к снижению вероятности Т. и. (т. к. при этом эфф. поле меньше кулоновского поля ядра).На св-ва Т. и. при прохождении эл-нов через в-во влияют эффекты, связанные со структурой среды и многократным рассеянием эл-нов. При Те->100 МэВ многократное рассеяние сказывается ещё и в том, что за время, необходимое для излучения фотона, эл-н проходит большое расстояние и может испытать столкновения с др. атомами. В целом многократное рассеяние при больших энергиях приводит в аморфных в-вах к снижению интенсивности и расширению пучка Т. и.Рис. 3. Поляризация Р (верхняя кривая) и энергетич. спектр (нижняя кривая) фотонов тормозного излучения как ф-ция ?gв ед. полной нач. энергии эл-на ?e= Te+mec2 для ?e=1 ГэВ (интенсивность I дана в произвольных единицах).При прохождении эл-нов больших энергий через кристалл возникает их дифракция — появляются резкие максимумы в спектре Т. и. и увеличивается степень поляризации (рис. 3).Причиной значит. Т. и. может быть тепловое движение в горячей разреж. плазме (с темп-рой 105—106К и выше). Элем. акты Т. и., наз. в этом случае тепловым, обусловлены столкновениями заряж. ч-ц, из к-рых состоит плазма. Косм. рентг. излучение, наблюдение к-рого стало возможным с появлением искусств. спутников Земли, частично (а излучение нек-рых дискр. рентг. источников, возможно, полностью) является, по-видимому, тепловым Т. и.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- ТОРМОЗНОЕ ИЗЛУЧЕНИЕ
-
-эл.-магн. излучение, испускаемое заряж. частицей при её рассеянии (торможении) в электрич. поле. Иногда к T. и. относят также излучение релятивистских заряж. частиц, движущихся в макроскопич. магн. полях (в ускорителях, в космич. пространстве), и называют его магнитотормозным.
Согласно классич. электродинамике, к-рая с хорошим приближением описывает осн. закономерности T. и., его интенсивность пропорциональна квадрату ускорения заряж. частицы (см. Излучение).T. к. ускорение обратно пропорционально массе т частицы, то в одном и том же поле T. и. электрона будет, напр., в миллионы раз мощнее излучения протона. Поэтому чаще всего наблюдается и практически используется T. и., возникающее при рассея-нии электронов на эл.-статич. поле атомных ядер и электронов; такова, в частности, природа тормозного рентгеновского излучения и гамма-излучения, испускаемых быстрыми электронами при прохождении их через вещество.
Интенсивность T. и. электрона пропорциональна также квадрату ат. номера Z ядра, в поле к-poro он тормозится, т. к. по закону Кулона сила взаимодействия электрона с ядром (и, следовательно, ускорение электрона) пропорциональна заряду ядра Ze (e - элементарный электрич. заряд).
Спектр Т. и. непрерывен и ограничен максимально возможной энергией фотонов Т. и., равной нач. энергии электрона. При движении в веществе электрон с энергией выше нек-рой критич. энергии теряет энергию на Т. и., при меньших энергиях преобладают потери на возбуждение и ионизацию атомов. Значение напр., для свинца ~ 10М эВ, для воздуха ~200 МэВ.
Наиб. точное описание Т. и. даёт квантовая электродинамика. При не очень высоких энергиях электрона хорошее согласие теории с экспериментом достигается при рассмотрении рассеяния электронов только в кулоновском поле ядра. Согласно квантовой электродинамике, в поле ядра существует определ. вероятность квантового перехода электрона в состояние с меньшей энергией с испусканием, как правило, одного фотона (вероятность излучения большого числа фотонов очень мала). Поскольку энергия фотона равна разности начальной и конечной энергий электрона, спектр Т. и. (рис. 1) имеет резкую границу при энергии фотона, равной нач. кинетич. энергии электрона Т е. Т. к. вероятность (интенсивность) излучения в элементарном акте рассеяния пропорциональна Z2, то для увеличения выхода фотонов Т. и. в электронных пучках используются мишени из веществ с большими Z (свинец, платина и т. п.).
Рис. 1. Теоретические кривые энергии фотонов тормозного излучения электронов в свинце (4 верхние кривые) и в алюминии (нижняя кривая) с учётом экранирования; цифры на кривых - значение T е в единицах энергии покоя электрона Интенсивность I дана в относительных единицах.
Угл. распределение Т. и. существенно зависит от Т е: в нерелятивистских случаях где т е - масса электрона) оно подобно угл. распределению излучения электрич. диполя, перпендикулярного к плоскости траекторий электрона. При ультрарелятивистских энергиях Т. и. направлено вперёд по движению электрона и концентрируется в пределах конуса с угл. раствором (рад) (рис. 2); это свойство используется для получения интенсивных пучков фотонов высокой энергии (g-квантов) на электронных ускорителях. При этом Т. и. частично поляризовано.
Рис. 2. Угловое распределение тормозного излучения при ультрарелятивистских начальных энергиях элек тронов
Дальнейшее уточнение теории Т. и. достигается учётом экранирования кулоновского поля ядра электронами атома. Поправки на экранирование, существенные при и приводят к снижению вероятности (интенсивности) Т. и., т. к. при этом эфф. поле ядра меньше Ze.
На свойства Т. и. при прохождении электронов через вещество влияют эффекты, связанные с его структурой, а также с вероятностью многократного рассеяния электронов в нём. При за время, необходимое для излучения фотона, электрон проходит большое расстояние и может испытать столкновения с др. атомами. В аморфных веществах многократное рассеяние электронов больших энергий приводит к снижению интенсивности и расширению пучка Т. и.; в кристаллах возникает дифракция электронов, в спектре Т. и. появляются резкие максимумы и увеличивается степень его поляризации (рис. 3).
Причиной значит. Т. и. может быть тепловое движение частиц в горячей разреженной плазме (при темп-рах ~ 105 - 106 К и выше). Элементарные акты Т. и., называемые в этом случае тепловым излучением, обусловлены столкновениями заряж. частиц плазмы. Космич. рентг. излучение, наблюдение к-рого стало возможным с появлением ИСЗ, частично (а излучение нек-рых дискретных рентг. источников, возможно, полностью) является, по-видимому, тепловым Т. и.
Рис. 3. Поляризация P (верхняя кривая) и энергетический спектр (нижняя кривая) фотонов тормозного излучения как функция в единицах полной начальной энергии электрона для = 1 ГэВ (интенсивность I дана в произвольных единицах).
Лит.: Ахиезeр А. И., Берестецкий В. Б., Квантовая электродинамика, 4 изд., М., 1981; Богданкевич О. В., Николаев F. А., Работа с пучком тормозного излучения, М., 1964; Байер В. Н., Катков В. М., Фадин В. С., Излучение релятивистских электронов, М., 1973; Соколов А. А., Тернов И. М., Релятивистский электрон, М., 1974.
Э. А. Тагиров.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.